
ISRAEL J O U R N A L  OF MATH EMATICS  81 (1993), 281-287 

A GENERALIZATION OF A RESULT OF R. LYONS 
ABOUT MEASURES ON [0, 1) 

BY 

J. FELDMAN 

Department of Mathematics 
University of California at Berkeley 

Berkeley, California 94720 , USA 

ABSTRACT 

Let ~ be a probability measure on [0, I), invariant under S: x ~-* pz rood I, 

and for which almost every ergodic component has positive entropy. If q 

is a real number greater than I for which log q~ log p is irrational, and T~ 
sends z to qax rood 1, then for any c > 0 the measure pT~ "I will -- for a 

set of n of positive lower density -- be within ~ of Lebesgue measure. 

1. I n t r o d u c t i o n  

The following fact is proved: 

1.1. PROPOSITION: Suppose  p is an integer greater than one, and tt a probabi l i ty  

measure  on [0, 1) which is invariant under S : x ~-* p z  rood 1 and has no S -  

invariant s u m m a n d  o f  zero entropy. Then  for any  e > 0 there is a pos i t ive  integer  

b so that  i f  v is a real n u m b e r  greater  than one, and foi some  pos i t ive  in teger  m 

we have pmb <_ v < pro(b+ 1), then se t t ing  V x  = v x  mod 1, the measure  # V  -1 is 

wi th in  e o f  Lebesgue measure  (wi th  respect  to a preassigned metric for the  weak 

* topology). 

1.2. COROLLARY: I f  p and ¢t are as in Theorem 1.1, and q is a real number  

greater  than one for which log q~ logp is irrationM, and Tnx  = qnx rood 1, then 

]ATn I is weak * wi th in  e o f  Lebesgue measure  for a set o f  n o f  pos i t ive  lower den- 

sity. Consequent ly  there is a subsequence  o f  the  sequence # T ~  1 which converges 

weak * to Lebesgue measure.  
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When q is also an integer we denote by T the map x ~ q x m o d l ;  then 

what was called Tn is just T °, and we are in the context of the paper IF] of H. 

Furstenburg. The result of Lyons alluded to in the title, Theorem 4 of [L], is the 

special case of Corollary 1.2 where q is an integer relatively prime to p and # is 

exact. Indeed, the argument of Theorem 1.1 was motivated by Lyons' argument. 

Corollary 1.2 immediately yields the following result of D. Rudolph JR] and A. 

Johnson [J]: 

].3. COROLLARY: If  p and q are integers greater than one and having no common 

power, and # is a probability measure on [0,1) invariant under the corresponding 

transformations S and T, and/z  has no S and T invariant summand of zero 

entropy under S, then # is Lebesgue measure. 

This is clear because S and T commute, so that the zero-entropy component of 

# under S is also invariant under T, and therefore has measure zero. We believe 

that others, among them J-P. Thouvenot, are aware of a proof of the Rudolph- 

Johnson result along similar lines, at least for the case of relatively prime p and 

q. Also, Rudolph has told us that he and Johnson, using their aforementioned 

theorem, can show that (for the case of integer q) the set of n described in 

Theorem 1.1 actually has lower density one. 

Again for integer q, in the special case when the p-digit process is a nondegen- 

erate i.i.d process, or more generally weak Bernoulli (see IF-O]), a stronger sort 

of convergence holds; in fact, /z -a.e.x is normal to the base q, i.e the sequence 

q"x rood 1 is equidistributed on the interval (see [S], [K], IF-S]). It is conceivable 

that this remains true even when q is not assumed to be an integer. Indeed, if 

# is Lebesgue measure this is well-known (see [W]). However, we will not pursue 

the question here. 

The author is grateful to M. Smorodinsky for valuable conversations; to the 

participants in his Fall 1990 seminar at Berkeley for their suggestions and pa- 

tience; and to the National Science Foundation for partial support (grant DMS 

90-08102). 

2. P r e l i m i n a r i e s  

The object of the first lemma is to show how Corollary 1.2 follows from Propo- 

sition 1.1. 
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2.1. LEMMA: I f  q is a real number and p an integer, both greater than one, 

and log q~ log p is irrational, then for any positive integer b the set A of positive 

integers n for which q" = pmb + c with m a positive integer and 0 <_ c < pm is a 

set of positive lower density. 

Proof." The interval [logb/logp, log(b + 1)/logp) may be shifted by an in- 

teger k to contain a nondegenerate subinterval I of [0, 1). By [W], the se- 

quence (n log q/ logp)  rood I is equidistributed, so the set of positive n for which 

n l o g q / l o g p  lies in j + I for some integer j is a set of positive lower den- 

sity, and consequently likewise the set of positive n for which n log q lies in 

mlogp  + [logb, log(b + 1)) for some positive integer m. But this is precisely 

the set A. | 

2.2. LEMMA: Given e > 0 and a natural number K ,  and sets A1 , . . . ,AK of 

measure > 1 - e in a probability space, then the set of points which lie in no 

more than K / 2  of the sets has measure less than 2e. 

Proof: This is an easy Chebyshev inequality sort of argument, which is left to 

the reader. II 

In the context of Proposition 1.1: denote the partition [0, l /p) ,  ..., [ (p-  1)/p, 1) 

by P, and let B be the Borel subsets of [0,1) completed by #. Let B,  = 

S-"/3; then N ,  Bn = Boo is the so-called Pinsker algebra of S. Note that 

B = Vn~__0 S-n 'P,  so that Boo = Nk=l V,=k S-" 'P .  Let P,, and Poo be the con- 

ditional expectations given 13, and Boo respectively; these may also be viewed as 

projection operators on/:2 (#). 

2 . 3 .  L E M M A :  Let Cr(x) = e 2 i r r r z  o n  [0,1). I f r  ~ 0 then [Poo¢~} cannot equal 

one on a set of positive measure. 

Proof: By using complex conjugation, we see that it suffices to show this for 

positive r. The Pinsker algebra, being invariant, gives rise to a factor map 0 : 

[0, 1) ~-+ Y. The measure # decomposes: #(A) = f y  #y(A) d# o 8-1(y), S pushes 

down to a transformation So on Y, and uniqueness of the decomposition gives 

#Soy = / ly  S-1 for # o/9 -1 almost every y. The projection Poo is obtained simply 

by averaging with respect to the fibre measures: Pool(x)  = f x  fd#a , .  For any 

x such that this has absolute value 1, #0x must be supported on a level set of 

Cr, so #0x must consist of _< r atoms. Let E be the set of all y in Y for which 

#y consists of _< r atoms. Then E is invariant under So. But So, the restriction 
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of S to its Pinsker algebra, has no invariant summand of positive entropy; thus 

the restriction of So to E is of entropy zero, and since the restriction of S to 

E is a finite extension of this, it is likewise of entropy zero. Then the entropy 

assumption tells us that E must have measure zero. | 

Let S on (X, .'~, 15) be the canonical one -to-one extension of S. That is, S is/~- 

preserving and one-one on a set of full measure, and we have a map ~ : X ~ [0, 1) 

so that ~ - IB C 2 , /~  o ~-1 ~__ ~, ~ = S~, and .A is generated by ~- IB under S. 

Notice that 

n=0 n=0 k = n  

which is precisely the Pinsker algebra of ,~. Define 5 as V ~ I _ ~  ,~-n(~-179), 5 ,  

as S -aS ,  and 5-oo as f']n~-oo 5, .  Then 5 and C, are not pullbacks via ~-1 of 

a-algebras on [0, 1); however it is the case that 5 _ ~  = ~-1(Bo0): "the remote 

past equals the remote future". Let On be the conditional expection on 5,~, and 

0 - ~  that on 5-o¢. Then for all f in £2(~t), O - ~ ( f  o ~) = ( P ~ f )  o ~. 
The next lemma plays the role of lines 3 to 7 in the proof of Theorem 4 in [L]. 

2.4. LEMMA: Given e > 0 and fo, ...,fK in [~(Tt) , then /'or all suglciently 
large even integers J, O_(g+a/2)j(( foS-lrJ)(f lS-(K-a)J)  ... (fK)) lies within e 
o [ (O-=( fo )# -KJ) (O-=( f l )B - (K-a )J ) ' ' "  (O-~(f lC))  in /2(/2). 

Proof." Clearly it suffices to do this for f0, ..., fK ranging over an £2(/2)-dense 

subset of the unit ball of/oo(/~); noting that V~=0 s - N 5  = -A, assume that each 

fk is S -  NC-measurable for a fixed positive integer N, and is in the aforementioned 

unit ball. Let 6 = e/K. Choose J > 2N, and so large that each Q-j /2 fk  is 

within 6 of O - ~ f k  in Z~z(/~). Write gk for ( f0S-fk-1)J)  . . .  (fk-1), and Bk for 

O-(k+l/2)j((foS-kS) "'" (fk)) = Q--(k+,/2)J((gkS--J)(fk)). Each factor of gk is 

S-NS-measurable,  so gkS -J  is measurable with respect to s - ( N - J ) 5  C C-J~2, 

and by the basic properties of conditional expectation, 

~)_.l/2( (gk S -  g )( h ) ) = (9k S -  J)( O, _ j/2 f k ). 

But O-J/2fk is within 6 of O - ~ f k .  So Bk is within 6 of 

~)_(k+,/2)j((gkS-J)((2_~fk)) = O ( k + , / 2 ) j ( g S - J ) ( O - ~ h ) .  

One easily verifies that O-(k-~/2) j (gk)S-  J has the measurability and integration 

properties specifying the conditional expectation of 9kS - J  on C-(k+l/2)J; thus 
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this may be substituted in the previous equality, which therefore becomes 

(0_~_x /~ )~ (gk)~-~ ) (0_oo /~ )  = (B~_, ~ - ~ ) ( 0 - ~ h ) .  

By induction, BK is within K~ = e of ((Q,_oofo)S-KJ) . . .  (O,-o~fk). | 

Note that the preceding lemma is actually a general fact: any ergodic probabili- 

ty- preserving endomorphism of positive entropy could have been used in the role 

of ~-1 .  

3. P r o o f  o f  P r o p o s i t i o n  1.1 

Choose e > 0 and a positive integer R. Since finite linear combinations of expo- 

nentials are uniformly dense in C[0,1], it will suffice to find a positive integer b 

so that  if for some positive integer m the number v /p  m is closer than 1 to b then 

If ~rVd~l < 5e whenever 0 < Irl < R. 
Choose ~ > 0 so that if 0 < Irl < R then IPo~¢rl < 1 - ~ on a set of measure 

l - e ;  this can be done by Lemma 2.3. Choose K so (1-6)h' /2 < e. Choose an even 

integer J large enough for Lemma 2.4 to hold with f0 . . . .  f g  = dr 0 ~ whenever 

0 < Ir] < R; and also large enough that 27rr/p J/2 < e. Let b = p J + . - . + p ( K + l ) J ,  

and let v and m be as in the statement of Proposition 1.1. Then v = c + pmb 

with 0 < c < p " ,  so 

= (¢rc)(¢rp~+J)'"" (¢rp~,+CK+l.) 

= (¢r~)(¢~s-'+J)...  (¢rs~+¢~'+l)J), 

and f CrVdl~ = f (¢rc) (¢rSm+J)  . . .  (¢rSm+(g+l)J)d#.  

For 0 < x < 1 let rx  be z truncated at the (m + J /2 ) th  place in its expansion 

in powers of 1/p; that is, rx  = x l / p  + . . .  + Zm+ y/2/p 'n+ J/2. Then Ix - rz] < 

p-(,~+g/2), so I¢~r(z)-¢~r(rx) l  _< 2~rclrj]x-rxl < e.Thus ¢r~ is uniformly within 

e of ¢ = ere o r ,  for all such v and 0 < ]r I < R. So I f  CrYd#] is within e of 

[ f ( ¢ ) ( ¢ r S " + J ) - . .  (qS,.Sm+(K+l)J)dlzl. 

Lifting by ~-1 to integrate over X rather than [0, 1) gives 

I / ( ¢  o ~)(¢rs m+J o ~).. .  (¢rs '+¢ K + ' J  o ~)dPl. 
y x  
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Writing f for ¢r O {, this may be rewritten as 

i /x(O o ~)(f~m+J)... (f~m+(t,+~)J)@ I 

= i/s(¢ o ~ - (m+( l ,+ , ) J ) ) ( f~ - t , ' J ) . . .  

Inserting a conditional expection inside the integral, this becomes 

I fx 0-.,+,/2.((0 o ~-(m+(h+l)J))(f~-t£J). . .  (f))d[@ 

Because of measurability of ~b in T"o ''+J/2, ¢ o ~ is measurable in ~,-(m+ J/2)~, and 

¢ o ~ - ( m + ( K + 1 ) J )  is measurable in C-(t¢+1/2)J. Thus the latter function can be 

pulled past Q-(I¢+l/2)J in the previous expression, which then equals 

i fx ¢ o ~S-('"+(h'+I)J)O_(K+I/2)((fs-KJ)... (f))@l 

</\.  I¢ o 5~-("'+(I"+I)J)0_(U+I/2)((fS-KJ)..- (f))ld~ 

< fx IO'-(~r+I/u)J((fS-KJ)"" (f))ld#. 

By choice of J ,  Lemma 2.4 implies that  this differs by less than • from 

= fx I((P~o¢~) o ~)... ((PooCh) o ~'rJ)ld ~ 

= Ix I((P~¢,) o O"" (((Poo¢~) S*'J) o g)ldP 

= f I(P~°¢~)""" ((Poo¢~)S*cJ)ld#. 

Since each I(P¢¢¢~)S KJ] < 1 - (5 on a set of measure at least 1 - e, Lemma 2.2 

tells us that  this is < 2e + (1 - (5) g/2 < 3e, so I f ¢~Vdlz[ < 5e. | 
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