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ABSTRACT
Let ¢ be a probability measure on [0, 1), invariant under S: £ — pz mod 1,
and for which almost every ergodic component has positive entropy. If ¢
is a real number greater than 1 for which log ¢/ log p is irrational, and T,
sends z to q"z mod 1, then for any € > 0 the measure uT}; | will — for a

set of n of positive lower density — be within ¢ of Lebesgue measure.

1. Introduction

The following fact is proved:

1.1. PROPOSITION: Suppose p is an integer greater than one, and u a probability
measure on [0,1) which is invariant under S : ¢ — pz mod 1 and has no S-
invariant summand of zero entropy. Then for any € > 0 there is a positive integer
b so that if v is a real number greater than one, and fo: some positive integer m
we have p™b < v < p™(b+1), then setting Vz = vz mod 1, the measure uV ! is
within e of Lebesgue measure (with respect to a preassigned metric for the weak

* topology).

1.2. COROLLARY: If p and g are as in Theorem 1.1, and q is a real number
greater than one for which log ¢/ logp is irrational, and T,z = ¢z mod 1, then
pTt is weak * within € of Lebesgue measure for a set of n of positive lower den-
sity. Consequently there is a subsequence of the sequence uT,, ! which converges

weak * to Lebesgue measure.
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When ¢ is also an integer we denote by T the map z — ¢z mod 1; then
what was called T, is just 7", and we are in the context of the paper [F] of H.
Furstenburg. The result of Lyons alluded to in the title, Theorem 4 of [L}, is the
special case of Corollary 1.2 where ¢ is an integer relatively prime to p and p is
exact. Indeed, the argument of Theorem 1.1 was motivated by Lyons’ argument.

Corollary 1.2 immediately yields the following result of D. Rudolph [R] and A.
Johnson [J]:

1.3. COROLLARY: Ifp and q are integers greater than one and having no common
power, and p is a probability measure on {0,1) invariant under the corresponding
transformations S and T, and p has no S and T invariant summand of zero

entropy under S, then y is Lebesgue measure.

This is clear because S and T commute, so that the zero-entropy component of
1 under S is also invariant under T, and therefore has measure zero. We believe
that others, among them J-P. Thouvenot, are aware of a proof of the Rudolph-
Johnson result along similar lines, at least for the case of relatively prime p and
g. Also, Rudolph has told us that he and Johnson, using their aforementioned
theorem, can show that (for the case of integer ¢) the set of n described in
Theorem 1.1 actually has lower density one.

Again for integer ¢, in the special case when the p-digit process is a nondegen-
erate i.i.d process, or more generally weak Bernoulli (see [F-O]), a stronger sort
of convergence holds; in fact, p -a.e.z is normal to the base ¢, i.e the sequence
g™z mod 1 is equidistributed on the interval (see [S], [K], [F-S}). It is conceivable
that this remains true even when ¢ is not assumed to be an integer. Indeed, if
p is Lebesgue measure this is well-known (see [W]). However, we will not pursue
the question here.

The author is grateful to M. Smorodinsky for valuable conversations; to the
participants in his Fall 1990 seminar at Berkeley for their suggestions and pa-
tience; and to the National Science Foundation for partial support (grant DMS
90-08102).

2. Preliminaries

The object of the first lemma is to show how Corollary 1.2 follows from Propo-

sition 1.1.
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2.1. LEMMA: If q is a real number and p an integer, both greater than one,
and log q/ log p is irrational, then for any positive integer b the set A of positive
integers n for which ¢ = p™b+ ¢ with m a positive integer and 0 < c < p™ is a

set of positive lower density.

Proof: The interval [log b/ logp,log(b + 1)/logp) may be shifted by an in-
teger k to contain a nondegenerate subinterval I of [0,1). By [W], the se-
quence (nlog q/log p) mod 1 is equidistributed, so the set of positive n for which
nlogg/logp lies in j + I for some integer j is a set of positive lower den-
sity, and consequently likewise the set of positive n for which nlogg lies in
mlogp + {logb,log(b + 1)) for some positive integer m. But this is precisely
the set A. 1

2.2. LEMMA: Given ¢ > 0 and a natural number K, and sets Ai,...,Ax of
measure > 1 — € in a probability space, then the set of points which lie in no

more than K2 of the sets has measure less than 2e.

Proof: This is an easy Chebyshev inequality sort of argument, which is left to
the reader. 1

In the context of Proposition 1.1: denote the partition [0,1/p),...,[(p—1)/p,1)
by P, and let B be the Borel subsets of [0,1) completed by u. Let B, =
S~™"B; then (), Bn = Bo is the so-called Pinsker algebra of S. Note that
B =\o,S™"P, so that Beo = (re; Voer S™"P. Let P, and Py be the con-

ditional expectations given B, and By respectively; these may also be viewed as

projection operators on £2(p).

2.3. LEMMA: Let ¢.(z) = €27 on [0,1). Ifr # 0 then |Pn¢,| cannot equal

one on a set of positive measure.

Proof: By using complex conjugation, we see that it suffices to show this for
positive r. The Pinsker algebra, being invariant, gives rise to a factor map 8 :
[0,1) — Y. The measure p decomposes: u(A) = [, py(A)dp o 67'(y), S pushes
down to a transformation Sy on Y, and uniqueness of the decomposition gives
PSoy = pyS ™! for po67! almost every y. The projection Py is obtained simply
by averaging with respect to the fibre measures: Py f(z) = [y fdpg,. For any
z such that this has absolute value 1, yg, must be supported on a level set of
&, 50 pgr must consist of < r atoms. Let E be the set of all y in Y for which

py consists of < r atoms. Then E is invariant under Sp. But Sy, the restriction
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of S to its Pinsker algebra, has no invariant summand of positive entropy; thus
the restriction of Sy to E is of entropy zero, and since the restriction of S to
E is a finite extension of this, it is likewise of entropy zero. Then the entropy

assumption tells us that E must have measure zero. |

Let S on (X, A, ji) be the canonical one -to-one extension of S. That is, S is ji-
preserving and one-one on a set of full measure, and we have amap £ : X — [0,1)
sothat ¢ 1B C A, fio €1 = p, £S5 = S¢, and Ais generated by { !B under S.
Notice that

E'Bo=[5(¢'B) =V 575 'P),

n=0 n=0k=n
which is precisely the Pinsker algebra of S. Define C as ;;_oo S —rETlp), Co
as $5~"C, and C_,, as ﬂ::_oo Cr. Then C and C, are not pullbacks via £ of

o-algebras on [0,1); however it is the case that C_o = £71(Boo): “the remote
past equals the remote future”. Let Q.. be the conditional expection on C,, and
Q—_oo that on C_o,. Then for all f in L2(u), Q—oo(f 0 &) = (Poof) o €.

The next lemma plays the role of lines 3 to 7 in the proof of Theorem 4 in [L].

2.4. LEMMA: Given € > 0 and fy,..., fx in L®(j1) , then for all sufficiently
large even integers J, Q_(K_,_]/Z)J((foS'"KJ)(flS'_(K_l)J) - +(fK)) lies within €
of (Q—oo(fO)g_KJ)(Q—oo(fl )g_(K_l)J) e (Q—w(fl()) in Lz(ﬁ)-

Proof: Clearly it suffices to do this for fo,..., fk ranging over an £?(ji)-dense
subset of the unit ball of £%°(j); noting that \/§_, §—NG = A, assume that each
fi is S~N¢-measurable for a fixed positive integer N, and is in the aforementioned
unit ball. Let § = ¢/K. Choose J > 2N, and so large that each Q_J/sz is
within 6 of Q_oo x in L2(i). Write g for (fog_(k_l)J)---(fk_l), and B for
Q—ki1/2)7(foS78) - (f)) = Q—(k1/2)5((9:S™7)(f)). Each factor of gy is
S=N(¢_measurable, so gkg_J is measurable with respect to S—(N=I¢ 5_1/2,

and by the basic properties of conditional expectation,
Q- 12((ae577) (1)) = (9xS™NQ = 5/2 fr)-
But Q_J/sz is within 6 of Q_co fx. So By is within & of

Q— (k41727958 ) Q=0 i) = Q1720 5(95 ™ N Q=0 fi)-

One easily verifies that Q_( k—1/2) J(gk)g —7J has the measurability and integration

properties specifying the conditional expectation of g5~ on (f_(k+1/2)J-; thus
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this may be substituted in the previous equality, which therefore becomes

(Q—(k—l/2)J(gk)‘§_1)(Q~—0°fk) = (Bk—l 5—1)(Q~—oofk)'

By induction, By is within K6 = € of (Q—o0 f0)S™57) - (Q_cc fi)- [ |

Note that the preceding lemma is actually a general fact: any ergodic probabili-
ty- preserving endomorphism of positive entropy could have been used in the role

of §-1.

3. Proof of Proposition 1.1

Choose € > 0 and a positive integer R. Since finite linear combinations of expo-
nentials are uniformly dense in C|[0,1], it will suffice to find a positive integer b
so that if for some positive integer m the number v/p™ is closer than 1 to b then
| [ ¢V du| < 5¢ whenever 0 < |r| < R.

Choose § > 0 so that if 0 < |r| < R then |Py¢,| < 1— 6 on a set of measure
1—¢; this can be done by Lemma 2.3. Choose K so (1—6)"’/ 2 < e. Choose an even
integer J large enough for Lemma 2.4 to hold with fy = -+ fx = ¢, 0 whenever
0 < |r| < R; and also large enough that 27r/p?/? < e. Let b= p’ +--- 4 p(K+1)J|
and let v and m be as in the statement of Proposition 1.1. Then v = ¢+ p™b
with 0 < ¢ < p™, so

¢"V = ¢rv

= (Grc ) (rpm+7) - (Grpmxans)

= (¢re)($rS™H) - (pp5mHEADT),
and [ ¢, Vdp = [(fre)(@rS™H) - ($pSHIHDIY

For 0 < z < 1let 7z be z truncated at the (m + J/2)th place in its expansion

in powers of 1/p; that is, rz = 21 /p+--- + 1‘m+1/2/p"‘+J/2. Then |z — 2 <
p(m+3/2) 5o |$er(z)—er(T7)] £ 27c|rilz— 72| < €. Thus ¢, is uniformly within
€of Y = ¢c o7, for all such v and 0 < |r| < R. So | [ ¢,V dp| is within € of

| / () ($rS™H)- - (,8™HE+DI) gy

Lifting by ¢! to integrate over X rather than [0,1) gives

| /X (B0 E)(@rS™ 0 £)--- (4, 5™HE+DT o £



286 J. FELDMAN Isr. J. Math.

Writing f for ¢, o £, this may be rewritten as

[ 6o )(FS™H ) (840

= /X(w 0 £SmHRADIN £ S=KIy . (f)dji].

Inserting a conditional expection inside the integral, this becomes
i/x Q- (k4172 5(( 0 €S~ HEFDIN(F STy (£))dja].

Because of measurability of 1 in ’P(')"+J/ 2, o€ is measurable in S—(m+I/1)¢ , and
P 0 ¢S~ (mHE+DJ) ig measurable in C~_(K+1/2)J. Thus the latter function can be

pulled past Q_( K+1/2)s in the previous expression, which then equals

[ 4057 ERDDG_ ey (£ (£
< [ o g5T DD (£S5 - (1)l
< [ 10t (F57) - ()l
By choice of J, Lemma 2.4 implies that this differs by less than e from
J @ £)5757) (@l = [ [P0 57 - (Pust) o€l
= [ (Pt 0€)--- (Puot) 0 €5
= [ MRt o) (Pos)S™) o 1
= [ 1(Potr) - (Prot )5 .

Since each |(Po¢,)SK7| <1~ § on a set of measure at least 1 — ¢, Lemma 2.2
tells us that this is < 2¢ + (1 — §)%/2 < 3¢, s0 | [ ¢,V dy| < 5e. |
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