A GENERALIZATION OF A RESULT OF R. LYONS ABOUT MEASURES ON [0, 1)

BY

J. FELDMAN

Department of Mathematics University of California at Berkeley Berkeley, California 94720 , USA

ABSTRACT

Let μ be a probability measure on [0, 1), invariant under S: $x \mapsto px \mod 1$, and for which almost every ergodic component has positive entropy. If q is a real number greater than 1 for which $\log q/\log p$ is irrational, and T_n sends x to $q^n x \mod 1$, then for any $\epsilon > 0$ the measure μT_n^{-1} will -- for a set of n of positive lower density -- be within ϵ of Lebesgue measure.

1. Introduction

The following fact is proved:

1.1. PROPOSITION: *Suppose p is an integer greater than one, and* μ *a probability measure on* $[0, 1)$ *which is invariant under* $S : x \mapsto px \mod 1$ *and has no Sinvariant summand of zero entropy. Then for any* $\epsilon > 0$ there is a positive integer *b so that if v is a real number greater than one, and foi some positive integer m we have* $p^m b \le v < p^m(b+1)$ *, then setting* $Vx = vx \mod 1$ *, the measure* μV^{-1} is within ϵ of Lebesgue measure (with respect to a preassigned metric for the weak ** topology).*

1.2. COROLLARY: If p and μ are as in Theorem 1.1, and q is a real number *greater than one for which* $\log q / \log p$ *is irrational, and* $T_n x = q^n x \mod 1$ *, then* μT_n^{-1} is weak $*$ within ϵ of Lebesgue measure for a set of n of positive lower density. Consequently there is a subsequence of the sequence μT_n^{-1} which converges *weak * to Lebesgue measure.*

Received November 3, 1991 and in revised form July 28, 1992

When q is also an integer we denote by T the map $x \mapsto qx \mod 1$; then what was called T_n is just T^n , and we are in the context of the paper [F] of H. Furstenburg. The result of Lyons alluded to in the title, Theorem 4 of [L], is the special case of Corollary 1.2 where q is an integer relatively prime to p and μ is *exact.* Indeed, the argument of Theorem 1.1 was motivated by Lyons' argument.

Corollary 1.2 immediately yields the following result of D. Rudolph $[R]$ and A. Johnson [J]:

].3. COROLLARY: *If p and q are integers* greater *than one and having no common power, and* μ *is a probability measure on [0,1] invariant under the corresponding transformations S and T, and* μ *has no S and T invariant summand of zero* entropy under S , then μ is Lebesgue measure.

This is clear because S and T commute, so that the zero-entropy component of μ under S is also invariant under T, and therefore has measure zero. We believe that others, among them J-P. Thouvenot, are aware of a proof of the Rudolph-Johnson result along similar lines, at least for the case of relatively prime p and q. Also, Rudolph has told us that he and Johnson, using their aforementioned theorem, can show that (for the case of integer q) the set of n described in Theorem 1.1 actually has lower density one.

Again for integer q , in the special case when the p-digit process is a nondegenerate i.i.d process, or more generally *weak Bernoulli* (see [F-O]), a stronger sort of convergence holds; in fact, μ *-a.e.x* is normal to the base q , i.e the sequence $q^n x \mod 1$ is equidistributed on the interval (see [S], [K], [F-S]). It is conceivable that this remains true even when q is not assumed to be an integer. Indeed, if μ is Lebesgue measure this is well-known (see [W]). However, we will not pursue the question here.

The author is grateful to M. Smorodinsky for valuable conversations; to the participants in his Fall 1990 seminar at Berkeley for their suggestions and patience; and to the National Science Foundation for partial support (grant DMS 90-08102).

2. Preliminaries

The object of the first lemma is to show how Corollary 1.2 follows from Proposition 1.1.

2.1. LEMMA: *If q is a real number and p an integer, both* greater *than one,* and $\log q/\log p$ is irrational, then for any positive integer b the set A of positive integers n for which $q^n = p^m b + c$ with m a positive integer and $0 \leq c < p^m$ is a *set of positive lower density.*

Proof. The interval $\log b / \log p$, $\log(b + 1) / \log p$ may be shifted by an integer k to contain a nondegenerate subinterval I of $[0, 1)$. By [W], the sequence $(n \log q / \log p)$ mod 1 is equidistributed, so the set of positive n for which $n \log q / \log p$ lies in $j + I$ for some integer j is a set of positive lower density, and consequently likewise the set of positive n for which $n \log q$ lies in $m \log p + [\log b, \log(b + 1)]$ for some positive integer m. But this is precisely the set A.

2.2. LEMMA: Given $\epsilon > 0$ and a natural number K, and sets $A_1, ..., A_K$ of *measure* $> 1 - \epsilon$ *in a probability space, then the set of points which lie in no* more than $K/2$ of the sets has measure less than 2ϵ .

Proof: This is an easy Chebyshev inequality sort of argument, which is left to the reader.

In the context of Proposition 1.1: denote the partition $[0, 1/p), ..., [(p-1)/p, 1)$ by P, and let B be the Borel subsets of $[0,1)$ completed by μ . Let $\mathcal{B}_n =$ S^{-n} B; then $\bigcap_n B_n = B_\infty$ is the so-called Pinsker algebra of S. Note that $B = \bigvee_{n=0}^{\infty} S^{-n} \mathcal{P},$ so that $B_{\infty} = \bigcap_{k=1}^{\infty} \bigvee_{n=k}^{\infty} S^{-n} \mathcal{P}.$ Let P_n and P_{∞} be the conditional expectations given B_n and B_∞ respectively; these may also be viewed as projection operators on $\mathcal{L}^2(\mu)$.

2.3. LEMMA: Let $\phi_r(x) = e^{2i\pi rx}$ on [0,1]. If $r \neq 0$ then $|P_\infty \phi_r|$ cannot equal *one on a set of positive measure.*

Proof: By using complex conjugation, we see that it suffices to show this for *positive r.* The Pinsker algebra, being invariant, gives rise to a factor map θ : $[0, 1) \mapsto Y$. The measure μ decomposes: $\mu(A) = \int_Y \mu_y(A) d\mu \circ \theta^{-1}(y)$, S pushes down to a transformation S_0 on Y, and uniqueness of the decomposition gives $\mu_{S_0y} = \mu_y S^{-1}$ for $\mu \circ \theta^{-1}$ almost every y. The projection P_{∞} is obtained simply by averaging with respect to the fibre measures: $P_{\infty}f(x) = \int_{X} f d\mu_{\theta x}$. For any x such that this has absolute value 1, μ_{θ_x} must be supported on a level set of ϕ_r , so $\mu_{\theta x}$ must consist of $\leq r$ atoms. Let E be the set of all y in Y for which μ_{ν} consists of $\leq r$ atoms. Then E is invariant under S_0 . But S_0 , the restriction

284 **J. FELDMAN J. FELDMAN Isr. J. Math.**

of S to its Pinsker algebra, has no invariant summand of positive entropy; thus the restriction of S_0 to E is of entropy zero, and since the restriction of S to E is a finite extension of this, it is likewise of entropy zero. Then the entropy assumption tells us that E must have measure zero.

Let \tilde{S} on $(X, \tilde{\mathcal{A}}, \tilde{\mu})$ be the canonical one -to-one extension of S. That is, \tilde{S} is $\tilde{\mu}$ preserving and one-one on a set of full measure, and we have a map $\zeta : X \mapsto [0,1)$ so that $\xi^{-1}B \subset \tilde{\mathcal{A}}, \tilde{\mu} \circ \xi^{-1} = \mu, \xi \tilde{S} = S\xi$, and $\tilde{\mathcal{A}}$ is generated by $\xi^{-1}B$ under \tilde{S} . Notice that

$$
\xi^{-1}\mathcal{B}_{\infty}=\bigcap_{n=0}^{\infty}\tilde{S}^{-n}(\xi^{-1}\mathcal{B})=\bigcap_{n=0}^{\infty}\bigvee_{k=n}^{\infty}\tilde{S}^{-k}(\xi^{-1}\mathcal{P}),
$$

which is precisely the Pinsker algebra of \tilde{S} . Define \tilde{C} as $\bigvee_{n=-\infty}^{-1} \tilde{S}^{-n}(\xi^{-1}\mathcal{P}), \tilde{C}_n$ as $\tilde{S}^{-n}\tilde{C}$, and $\tilde{C}_{-\infty}$ as $\bigcap_{n=-\infty}^{-1}\tilde{C}_n$. Then \tilde{C} and \tilde{C}_n are not pullbacks via ξ^{-1} of σ -algebras on [0, 1); however it is the case that $\tilde{\mathcal{C}}_{-\infty} = \xi^{-1}(\mathcal{B}_{\infty})$: "the remote past equals the remote future". Let \tilde{Q}_n be the conditional expection on \tilde{C}_n , and $\tilde{Q}_{-\infty}$ that on $\tilde{C}_{-\infty}$. Then for all f in $\mathcal{L}^2(\mu), \tilde{Q}_{-\infty}(f \circ \xi) = (P_{\infty}f) \circ \xi$.

The next lemma plays the role of lines 3 to 7 in the proof of Theorem 4 in [L].

2.4. LEMMA: Given $\epsilon > 0$ and $f_0, ..., f_K$ in $\mathcal{L}^{\infty}(\tilde{\mu})$, then for all sufficiently *large even integers J,* $\tilde{Q}_{-(K+1/2)J}((f_0\tilde{S}^{-KJ})(f_1\tilde{S}^{-(K-1)J})\cdots(f_K))$ lies within ϵ $\sigma(f(\tilde{Q}_{-\infty}(f_0)\tilde{S}^{-KJ})(\tilde{Q}_{-\infty}(f_1)\tilde{S}^{-(K-1)J})\cdots(\tilde{Q}_{-\infty}(f_K))$ in $\mathcal{L}^2(\tilde{\mu})$.

Proof. Clearly it suffices to do this for $f_0, ..., f_K$ ranging over an $\mathcal{L}^2(\tilde{\mu})$ -dense subset of the unit ball of $\mathcal{L}^{\infty}(\tilde{\mu})$; noting that $\bigvee_{N=0}^{\infty} \tilde{S}^{-N}\tilde{\mathcal{C}} = \tilde{\mathcal{A}}$, assume that each f_k is $\tilde{S}^{-N}\tilde{C}$ -measurable for a fixed positive integer N, and is in the aforementioned unit ball. Let $\delta = \epsilon/K$. Choose $J > 2N$, and so large that each $\tilde{Q}_{-J/2}f_k$ is within δ of $\tilde{Q}_{-\infty}f_k$ in $\mathcal{L}^2(\tilde{\mu})$. Write g_k for $(f_0\tilde{S}^{-(k-1)J})\cdots(f_{k-1})$, and B_k for $\tilde{Q}_{-(k+1/2)J}((f_0\tilde{S}^{-kJ})\cdots(f_k)) = \tilde{Q}_{-(k+1/2)J}((g_k\tilde{S}^{-J})(f_k)).$ Each factor of g_k is $\tilde{S}^{-N}\tilde{C}$ -measurable, so $g_k\tilde{S}^{-J}$ is measurable with respect to $\tilde{S}^{-(N-J)}\tilde{C} \subset \tilde{C}_{-J/2}$, and by the basic properties of conditional expectation,

$$
\tilde{Q}_{-J/2}((g_k\tilde{S}^{-J})(f_k))=(g_k\tilde{S}^{-J})(\tilde{Q}_{-J/2}f_k).
$$

But $\tilde{Q}_{-J/2}f_k$ is within δ of $\tilde{Q}_{-\infty}f_k$. So B_k is within δ of

$$
\tilde{Q}_{-(k+1/2)J}((g_k\tilde{S}^{-J})(\tilde{Q}_{-\infty}f_k)) = \tilde{Q}_{(k+1/2)J}(g\tilde{S}^{-J})(\tilde{Q}_{-\infty}f_k).
$$

One easily verifies that $\tilde{Q}_{-(k-1/2)J}(g_k)\tilde{S}^{-J}$ has the measurability and integration properties specifying the conditional expectation of $g_k\tilde{S}^{-J}$ on $\tilde{C}_{-(k+1/2)J}$; thus this may be substituted in the previous equality, which therefore becomes

$$
(\tilde{Q}_{-(k-1/2)J}(g_k)\tilde{S}^{-J})(\tilde{Q}_{-\infty}f_k)=(B_{k-1}\tilde{S}^{-J})(\tilde{Q}_{-\infty}f_k).
$$

By induction, B_K is within $K\delta = \epsilon$ of $((\tilde{Q}_{-\infty}f_0)\tilde{S}^{-KJ})\cdots(\tilde{Q}_{-\infty}f_k).$

Note that the preceding lemma is actually a general fact: any ergodic probability- preserving endomorphism of positive entropy could have been used in the role of \tilde{S}^{-1} .

3. Proof of Proposition 1.1

Choose $\epsilon > 0$ and a positive integer R. Since finite linear combinations of exponentials are uniformly dense in $C[0,1]$, it will suffice to find a positive integer b so that if for some positive integer m the number v/p^m is closer than 1 to b then $|\int \phi_r V d\mu| < 5\epsilon$ whenever $0 < |r| < R$.

Choose $\delta > 0$ so that if $0 < |r| < R$ then $|P_{\infty}\phi_r| < 1 - \delta$ on a set of measure $1-\epsilon$; this can be done by Lemma 2.3. Choose K so $(1-\delta)^{K/2} < \epsilon$. Choose an even integer J large enough for Lemma 2.4 to hold with $f_0 = \cdots f_K = \phi_r \circ \xi$ whenever $0 < |r| < R$; and also large enough that $2\pi r/p^{J/2} < \epsilon$. Let $b = p^{J} + \cdots + p^{(K+1)J}$, and let v and m be as in the statement of Proposition 1.1. Then $v = c + p^m b$ with $0 \leq c < p^m$, so

$$
\phi_r V = \phi_{rv}
$$

= $(\phi_{rc})(\phi_{rp^{m+J}}) \cdots (\phi_{rp^{m+(K+1)J}})$
= $(\phi_{rc})(\phi_r S^{m+J}) \cdots (\phi_r S^{m+(K+1)J}),$

and $\int \phi_r V d\mu = \int (\phi_{rc})(\phi_r S^{m+J}) \cdots (\phi_r S^{m+(K+1)J}) d\mu$.

For $0 \le x < 1$ let τx be x truncated at the $(m + J/2)$ th place in its expansion in powers of $1/p$; that is, $\tau x = x_1/p + \cdots + x_{m+1/2}/p^{m+1/2}$. Then $|x - \tau x|$ < $p^{-(m+J/2)}$, so $|\phi_{cr}(x)-\phi_{cr}(\tau x)| \leq 2\pi c|r||x-\tau x| < \epsilon$. Thus ϕ_{rc} is uniformly within ϵ of $\psi = \phi_{rc} \circ \tau$, for all such v and $0 < |r| < R$. So $|\int \phi_r V d\mu|$ is within ϵ of

$$
|\int (\psi)(\phi_r S^{m+J})\cdots(\phi_r S^{m+(K+1)J})d\mu|.
$$

Lifting by ξ^{-1} to integrate over X rather than [0, 1) gives

$$
\big|\int_X (\psi \circ \xi)(\phi_r S^{m+J} \circ \xi) \cdots (\phi_r S^{m+(K+1)J} \circ \xi) d\tilde{\mu}\big|.
$$

Writing f for $\phi_r \circ \xi$, this may be rewritten as

$$
\begin{aligned} & \big| \int_X (\psi \circ \xi)(f\tilde{S}^{m+J}) \cdots (f\tilde{S}^{m+(K+1)J}) d\tilde{\mu} \big| \\ &= \big| \int_X (\psi \circ \xi \tilde{S}^{-(m+(K+1)J)}) (f\tilde{S}^{-KJ}) \cdots (f) d\tilde{\mu} \big|. \end{aligned}
$$

Inserting a conditional expection inside the integral, this becomes

$$
\big|\int_X \tilde{Q}_{-(K+1/2)J}((\psi\circ\xi\tilde{S}^{-(m+(K+1)J)})(f\tilde{S}^{-KJ})\cdots(f))d\tilde{\mu}\big|.
$$

Because of measurability of ψ in $\mathcal{P}_0^{m+J/2}$, $\psi \circ \xi$ is measurable in $\tilde{S}^{-(m+J/2)}\tilde{\mathcal{C}}$, and $\psi \circ \xi \tilde{S}^{-(m+(K+1)J)}$ is measurable in $\tilde{C}_{-(K+1/2)J}$. Thus the latter function can be pulled past $\tilde{Q}_{-(K+1/2)J}$ in the previous expression, which then equals

$$
\begin{split} & \left| \int_{X} \psi \circ \xi \tilde{S}^{-(m+(K+1)J)} \tilde{Q}_{-(K+1/2)}((f\tilde{S}^{-KJ}) \cdots (f)) d\tilde{\mu} \right| \\ &\leq \int_{X} |\psi \circ \xi \tilde{S}^{-(m+(K+1)J)} \tilde{Q}_{-(K+1/2)}((f\tilde{S}^{-KJ}) \cdots (f))| d\tilde{\mu} \\ &\leq \int_{X} |\tilde{Q}_{-(K+1/2)J}((f\tilde{S}^{-KJ}) \cdots (f))| d\tilde{\mu} .\end{split}
$$

By choice of J, Lemma 2.4 implies that this differs by less than ϵ from

$$
\int_X |((\tilde{Q}_{-\infty}f)\tilde{S}^{-KJ})\cdots(\tilde{Q}_{\infty}f)|d\tilde{\mu} = \int_X |(P_{\infty}(\phi_r)\circ\xi\tilde{S}^{-KJ})\cdots((P_{\infty}\phi_r)\circ\xi)|d\tilde{\mu}
$$
\n
$$
= \int_X |((P_{\infty}\phi_r)\circ\xi)\cdots((P_{\infty}\phi_r)\circ\xi\tilde{S}^{KJ})|d\tilde{\mu}
$$
\n
$$
= \int_X |((P_{\infty}\phi_r)\circ\xi)\cdots(((P_{\infty}\phi_r)S^{KJ})\circ\xi)|d\tilde{\mu}
$$
\n
$$
= \int |(P_{\infty}\phi_r)\cdots((P_{\infty}\phi_r)S^{KJ})|d\mu.
$$

Since each $|(P_{\infty}\phi_r)S^{KJ}|\leq 1-\delta$ on a set of measure at least $1-\epsilon$, Lemma 2.2 tells us that this is $\langle 2\epsilon + (1-\delta)^{K/2} \rangle \langle 3\epsilon, \text{ so } | \int \phi_r V d\mu | \langle 5\epsilon.$

References

[F-S] J. Feldman and M. Smorodinsky, *Normal numbers from independent processes*, preprint.

- IF-O] N.A. Friedman and D.S. Ornstein, *On isomorphism of weak Bernoulli transformations,* Advances in Math. 4 (1970), 337-352.
- IF] H. Furstenburg, *Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation,* Math. Systems Theory 1 (1967), 1-49.
- [J] A.S.A. Johnson, *Measures on* the circle *invariant* under *multiplication by a nonlacunary subsemigroup of the integers,* preprint.
- [K] M.S. Keane and C.E.M. Pearce, *On normal numbers, J.* Austral. Math. Soc. (series A) 32 (1982), 79-87.
- [L] R. Lyons, On *measures simultaneously 2- and 3-invariant,* Israel J. Math. 61 (1988), 219-224.
- [R] D. Rudolph, x2 and x3 *invariant* measures and *entropy,* Ergodic Theory and Dynamical Systems 10 (1990), 395-406.
- [S] W. Schmidt, *On normal numbers*, Pacific J. Math. 10 (1960), 661-672.
- [W] H. Weyl, *Über die Gleichverteilung von Zahlen mod Eins, Math. Ann.* 77 (1916), 313-352.